
Available online www.unicrossjournals.com

 Date Accepted:

 30th June, 2023

Pages 207 - 213

EXPLORING THE BENEFITS AND DEVELOPMENT ISSUES OF SOFTWARE SOLUTION

PROTOTYPING

Fidelis I. Onah

ikonah80@yahoo.com

Department of Computer Science

Cross River University of Technology, Calabar

Abstract

The creation of reliable and efficient computer software that is acceptable to prospective users and

stakeholders is a prominent feature in today’s technology. As modern systems and computer products get

more complex, the more the yearning for some kind of orderly development process that allow designers,

users, developers and managers to have an early glimpse of the look and feel of the final product. In this

research paper, some of the major issues in fabricating physical prototypes at all stages of new product

design are assessed. Each of the phases in the development of prototype software is considered. The

benefits and limitations of prototyping are investigated. The findings of an experimental evaluation of the

prototype approach are presented. Finally, the guidelines for selecting a prototype are proposed. This paper

is therefore a simple, practical assessment of the prototype approach to software applications development.

Keywords: Software solution, Prototyping, Prototype model, Benefits, Limitations

1. Introduction

Software (solution) development refers to the

procedures involved in the creation of a computer

application system. It can also be said to be the

various steps a computer system passes through

during its existence (Rice G. F. et al, 1988)

There are various software development life

cycle (SDLC) models. Each of these models

follows a series of steps in the development

process. Examples include waterfall, spiral,

Agile, V-shaped, Big Bang, Rapid Application,

Joint Application Development and Prototyping

models (Finoit, Inc., 2023). Irrespective of the

life cycle model used, the different phases in the

software development process include:

(1) Initial feasibility study – The system is

conceived from a variety of sources; mostly

from management.

(2) Analysis of software requirements – The

systems analyst carried out a procedural

study of the system’s operations, and then

prepares a problem definition so that a

database can be built.

(3) Detailed specification of the software

requirements.

(4) Software design – a set of specifications for

the software describing exactly how the

system will be built to meet the objectives

established for it by whoever conceived the

system.

(5) Programming – The systems implementer

selects appropriate languages, tools and

techniques used in the implementation.

(6) Testing the product

(7) Maintenance of the finished application

(Finoit, Inc., 2023).

The determination of what the customer or user

of a software package exactly requires has been

one of the major problems of software

engineering. For complicated and large systems

JOURNAL OF CONTEMPORARY RESEARCH (JOCRES)

RESEARCH ARTICLE VOL. 2 (1) ISSN:2814-2241

http://www.unicrossjournals.com/
mailto:autoresponse2023@yahoo.com

JOURNAL OF CONTEMPORARY RESEARCH (JOCRES) VOL.2 (1)

without manual or existing system, it is even

more difficult to determine and exhaustively

specify these users requirements.2 Discussions

on this issue have always centered on the

importance of maintaining a dialogue between

the designers and the customers. To meet these

challenges, prototyping is strongly recommended

(Mary Alavi, 1984).

1.0 What is Software Prototyping?

Software prototyping is the creation of a

preliminary version of a software program being

developed in order to allow certain aspects of the

system to be investigated. A prototype may be

defined as “an early sample, model, or release of

a product built to test a concept or process”

(Wikipedia, 2022; Wikipedia, 2023). This

method models the software to be created

through maintaining an interactive dialogue

between the designer and the customer after the

initial specification. Thus, intended users are

allowed to gain a clearer idea of the nature of the

services and give a feedback in terms of their

needs and requirements. A prototype program is

constructed that implements the dialogue as

specified, but often without the full computation

required in the complete program. The

requirement specification for the system can then

be updated to reflect this feedback and so

increase confidence in the final system. Often the

user finds that the dialogue implemented by the

prototype is incomplete or difficult to use.

Changes are made in requirements, and the

prototype is modified to implement the improved

dialogue. Ultimately, when the user is satisfied

with the dialogue, then the computational

subprograms are fully implemented so that

correct results are produced (Dodd W. P., 1980).

As already pointed out, prototyping is the most

efficient tool to use for new systems which

cannot be specified in detail because the user is

unable to define his needs. One reason for

developing a prototype is that it is impossible to

“get it right” the first time; and designers must

plan to throw away the first product in order to

develop an optimal finished product.

The degree of completeness and the techniques

used in prototyping have been in development

and debate since its proposal in the early 1970s.

2.0 Prototyping Process Model and

Methodology

The diagram below (fig. 1) shows the phases of a

typical prototyping process model.

Start

 

Stop

Analyze

 Requirements

Design

Building Prototype

Prototype Revision

& Updating

Customer Evaluation

Development

Testing

Maintenance

Fig. 1: The Phases of the Prototype Approach

EXPLORING THE BENEFITS AND DEVELOPMENT ISSUES OF SOFTWARE SOLUTION PROTOTYPING Fidelis I. Onah

The steps of the prototyping method are

discussed as follows:

Step 1: Gather and analyze requirements

The designer contacts the end-users to

learn their requirements, develop

preliminary logical designs and write the

system specifications. Since the designer

will submit a working model of the

systems for testing, the design can

contain flaws or omissions which will be

resolved later.

Step 2: Design

Software design is the specification or

construction of a technical, computer-

based solution for the business

requirements identified in the

requirement analysis. It accurately

translates a customer’s requirements

into a finished product; and serves as a

foundation for all development and

maintenance phase steps that follow.

Temporary forms are developed and

input screen and databases assembled

(Donald H. Sanders, 1985).

Step 3: Building Prototype

 Prototype construction is the

development, installation, and testing of

system components (IT Chronicles

Media Inc, 2023).

Step 4: Customer Evaluation

The prototype system is turned over to a

limited number of end users for their

testing and evaluation.

Step 5: Take a decision: Is the customer

satisfied?

If Yes,

 go to step 6

else

 Refine prototype;

 Loop back to step 2

The prototype is reworked (refined)

based upon the experiences of end-user

tests. If the prototype system design is

maintained on the computer, changes in

forms, input screens, and procedures can

be made easily.

Revision and upgrading may be repeated

several times until an acceptable system

is developed.

Step 6: Development

This is the process of creating the

computer software using one or more

specific programming language(s) (IT

Chronicles Media Inc, 2023).

Step 7: Testing

This ensures that the prototype

application programs written and tested

in isolation work properly when they are

integrated into the total system. Errors,

gaps, or missing requirements are

identified here.

Step 8: Maintenance

Implemented systems and programs are

usually subject to continual change and

must therefore be maintained. This

modification and improvement must be

a cooperative effort between those

served by the system or program

(customers) and those responsible for

maintaining it (Jeffrey L. Whitten

Lonnie et al, 2001).

The prototyping methodology translates to the

following algorithm (Fig. 2).

JOURNAL OF CONTEMPORARY RESEARCH (JOCRES) VOL.2 (1)

3.0 Evaluation of the Prototyping Model

3.1 Experimental Results

Based on the experimental evaluation of the

prototype approach (Wilkinson G. G. and Winter

flood A. R., 1991), the following are the findings:

1. Prototyping users are usually more

satisfied with their level of participation

in the design process and perceive less

conflict between users and designers.

2. Prototyping users have more favourable

perceptions and attitude towards the

design process relative to users of other

life-cycle models.

3. Users of a prototype have a higher ease of

communication with the designers and

have a higher understanding of the design

project.

Planning & Requirement

Analysis

Start

Design

Prototype Construction

End-user testing &

Evaluation

Review & Update

Prototype

Programming

Certify application

(test)

Operate and Maintain

Stop

No

Yes

Is

Customer Satisfied

?

Fig. 2: Algorithm of the Prototyping Method

EXPLORING THE BENEFITS AND DEVELOPMENT ISSUES OF SOFTWARE SOLUTION PROTOTYPING Fidelis I. Onah

4. Prototype designers have more difficulty

managing and controlling the design

process than designers of other life-cycle

models.

5. The designers employing prototype

perceive a higher degree of change in user

specification during the design process.

There is a higher utilization of the system

designed by the prototyping approach than the

system designed by other life-cycle approaches.

3.2 Benefits of Prototyping

The main benefits of prototyping to the

educational, financial, transportation,

government, manufacturing and health services

industries, etc. include:

1. Better communication and rapport:

Prototyping provide a working model of

the system; so users get a better

understanding of the system being

developed and its intended purpose

before resources are used for the

development of the entire system. Better

understanding between users and

developers lead to a better working

relationship between them. This results in

final product that is more likely to satisfy

users’ desire for look, feel and

performance.

2. Early feedback: Prototyping allows

software designers to get valuable

feedback (reviews) from the users (in

terms of their needs and requirements)

early in the project development process.

The feeling of apathy towards the system

by the users is removed by users’ active

participation and commitment. In this

way, developers can steer the product in

the right direction.

3. Reduced time and costs of

development: Early determination of

what the user really wants before

resources are committed to the project

can result in faster and less expensive

software. Flaws (or defects) detected later

in the development process cost

exponentially more to implement.

4. Validation before development:

Customers can validate the prototype at

the earlier stage and provide their inputs

and feedback. So, developers can have

some insight into the accuracy of initial

project estimates and whether the

deadlines and milestones proposed can be

successfully met. Potential problems and

opportunities can respectively be

detected and exploited as well (Ruchi

Goel, 2022).

5. Clarification of user set goals:

Identifying the prospective users’ set

goals reveals to designers how usable and

valuable their product are to the end users

in real-world scenarios. Missing,

confusing or difficult functionalities can

be identified easily and fixed or clarified

to address users’ pain points; and ensure

that the final product is not only beautiful

on the outside, but functional and

enjoyable on the inside.

3.3 Limitations of Prototyping

1. It is difficult to fill all the requirements of

the prototype software initially. Too

much dependence on prototype can lead

to insufficient requirement analysis.

When purpose and scope are ill-defined

by the user, there is potential for

misunderstanding.

2. Limited in capabilities: Users may

sometimes expect the performance of

certain features included in a prototype to

be the same as the final system. If those

features are removed from the

specification for the final system, it can

lead to conflict. Unrealistic user

expectations may result in

disappointments.

3. Prototypes are difficult to manage and

control because the form of the evolving

systems, number of revisions to the

prototype and some user requirements are

JOURNAL OF CONTEMPORARY RESEARCH (JOCRES) VOL.2 (1)

unknown at the beginning. And it is

difficult to predict how the system will

work after development.

4. Expansion in scope: Prototyping large

software application is difficult because it

is not clear how aspects of the system to

be prototyped are identified and

boundaries set. The complexity of the

system may increase as the scope

expands be4yond original plans.

5. Extra costs and development time:

Prototyping can lead to changes in

requirements and development

methodologies. This suggests throwing

away parts of the prototype and

redesigning them; which incurs extra

cost. When companies need to retain

and/or retool due to change in

development methodologies, the start-up

costs for building a prototyping

development team may be high. The time

and cost saving benefits of prototyping

can be lost if sophisticated software

prototypes are employed.

6. New bugs: Modifying an existing system

may introduce new bugs in parts that used

to work correctly. It may also require

more testing and debugging as the

prototype is extended to the full system

than if all parts of the system is designed

and coded at one time.

3.4 Criteria for Selecting the Prototyping

Method

The following guidelines for selecting a

prototyping strategy are proposed:

1. Prototyping should be employed only

when users are able to actively participate

in the project.

2. Prototyping effort should be undertaken

by designers and users who either have

the experience or are given training on the

use and purpose of prototyping.

3. Prototypes should become part of the

final system only if the developers are

given access to prototyping support tools.

4. If experimentation and learning are

needed before there can be full

commitment to a project, prototyping can

be successfully used (Bill C. Hardgrave,

Rick L. Wilson and Ken Eastman, 1999).

4.0 Conclusion

This research paper has looked at the benefits,

limitations and development issues of prototype

application software.

Building an operational prototype offers us the

opportunity to maintain the customer-designer

dialogue after the initial specification unlike

other life cycle approaches. Thus, intended users

are allowed to gain a clearer idea of the nature of

the services and give a feedback in terms of the

needs and requirements. The requirement

specification for the system can then be updated

to reflect this feedback and so increase

confidence in the final system (Mary Alavi,

1984).

Prototyping is recommended when user

requirements are ambiguous, and where there is

need for experimentation before resources are

committed to the development of a full scale

system5. It was obvious that the price paid for not

prototyping, in terms of lack of confidence, etc.,

may outweigh the cost of prototyping when

viewed (quantified) in monetary terms (Mary

Alavi, 1984). But prototyping should be

undertaken by designers and users who are well

informed about it; otherwise frequent alterations

in user requirements may frustrate designers if

they are not prepared to accept such changes and

view them positively (Mary Alavi, 1984).

References

Bill C. Hardgrave, Rick L. Wilson and Ken

Eastman (1999). Toward a

Contingency Model for Selecting an

Information System Prototyping

Strategy. Journal of Management

Information Systems, Vol. 16, No. 2

EXPLORING THE BENEFITS AND DEVELOPMENT ISSUES OF SOFTWARE SOLUTION PROTOTYPING Fidelis I. Onah

(Fall, 1999). Retrieved from

https://shareok.org on 05/06/2022.

Dodd, W. P. (1980). Prototype Programs. The

Computer Journal. Vol. 13 (2).

https://ieeexplore.ieee.org.

Donald, H. Sanders (1985). Computers Today,

Third Edition. McGraw-Hill, Inc. pg.

471-479.

Finoit, Inc. (2023). SDLC Models &

Methodologies. 6565 N MacArthur

Blvd, STE 225 Irving, Texas, 75039,

United States. Retrieved from

https://www.finoit.com on 05/06/2022

IT Chronicles Media Inc. (2023). What is

Software Development? Retrieved from

https://itchronicles.com on 05/06/2022.

Jeffrey L. Whitten Lonnie, D. Bentley and Kevin

C. Dittman (2001). Systems Analysis

and Design Methods, 5th Edition. The

McGraw-Hill Companies, 1221

Avenue of the Americas, New York,

NY, 10020.

Maryan Alavi (1984). Prototype Information

Systems. Communications of the ACM,

p. 27.

Rice G.F., Turner W. S. and Cashwell, D. F.

(1988). Systems Development

Methodology. Revised Edition, North-

Holland/American Elsevier.

Ruchi Goel (15th April, 22). Why is Prototyping

Important? Retrieved from

https://blog.zipboard.com on

30/05/2022.

Wikipedia (2023). Prototype. Retrieved from

https://en.m.wikipedia.org on

03/06/2022

Wilkinson, G. G. and Winterflood, A. R. (1991).

Fundamentals of Information

Technology. John Wiley and Sons Ltd.

Pg. 105.

.

https://shareok.org/
https://ieeexplore.ieee.org/
https://www.finoit.com/
https://itchronicles.com/
https://blog.zipboard.com/
https://en.m.wikipedia.org/

